Taxonomic and Environmental Variation of Metabolite Profiles in Marine Dinoflagellates of the Genus Symbiodinium

نویسندگان

  • Anke Klueter
  • Jesse B. Crandall
  • Frederick I. Archer
  • Mark A. Teece
  • Mary Alice Coffroth
چکیده

Microorganisms in terrestrial and marine ecosystems are essential to environmental sustainability. In the marine environment, invertebrates often depend on metabolic cooperation with their endosymbionts. Coral reefs, one of the most important marine ecosystems, are based on the symbiosis between a broad diversity of dinoflagellates of the genus Symbiodinium and a wide phyletic diversity of hosts (i.e., cnidarian, molluscan, poriferan). This diversity is reflected in the ecology and physiology of the symbionts, yet the underlying biochemical mechanisms are still poorly understood. We examined metabolite profiles of four cultured species of Symbiodinium known to form viable symbioses with reef-building corals, S. microadriaticum (cp-type A194), S. minutum (cp-type B184), S. psygmophilum (cp-type B224) and S. trenchii (cp-type D206). Metabolite profiles were shown to differ among Symbiodinium species and were found to be affected by their physiological response to growth in different temperatures and light regimes. A combined Random Forests and Bayesian analysis revealed that the four Symbiodinium species examined primarily differed in their production of sterols and sugars, including a C29 stanol and the two sterols C28Δ5 and C28Δ5,22, as well as differences in metabolite abundances of a hexose and inositol. Inositol levels were also strongly affected by changes in temperature across all Symbiodinium species. Our results offer a detailed view of the metabolite profile characteristic of marine symbiotic dinoflagellates of the genus Symbiodinium, and identify patterns of metabolites related to several growth conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Identification of Symbiodinium in Genus Acropora off Farur Island, Persian Gulf

Coral reefs which form some of the most diverse ecosystems on Earth support many symbiotic relationships. Symbiodinium can provide up to 90% of a coral.s energy requirements. Temperature rise, turbid water and high salinity in the Persian Gulf were among the factors separating zooxanthellae from corals and result in bleaching phenomenon. Therefore, it is crucial to identify Symbiodinium of the ...

متن کامل

Variation in Symbiodinium ITS2 Sequence Assemblages among Coral Colonies

Endosymbiotic dinoflagellates in the genus Symbiodinium are fundamentally important to the biology of scleractinian corals, as well as to a variety of other marine organisms. The genus Symbiodinium is genetically and functionally diverse and the taxonomic nature of the union between Symbiodinium and corals is implicated as a key trait determining the environmental tolerance of the symbiosis. Su...

متن کامل

Molecular Diversity of Symbiodinium spp. within six coral species in Larak Island, the Persian Gulf

Reef- building coral harbor communities of photosynthetic taxa of the genus Symbiodinium (zooxanthellae). The genus Symbiodinium is currently classified into nine genetic clades (A–I). Various corals harbor different Symbiodinium clades some show specificity to single strain. Coral and their zooxanthellae are sensitive to environmental stresses. In the Persian Gulf, coral reefs are subject to h...

متن کامل

Taxonomic status and genetic variation of the genus Castanea (Fagaceae) in Iran based on psbA and trnH-psbA

Species in the genus Castanea Mill. are one of the worthwhile species in the Hyrcanian forest of west Guilan (N Iran) with low region such as Siahmazgi, Ghalerodkhan and Visrod. that do not have good condition by reason of human interfering and disease. They have varying economic importance as nut tree crops, therefore, DNA barcoding technique can be a straightforward method for taxonomic statu...

متن کامل

Aspergillus Sydowii Marine Fungal Bloom in Australian Coastal Waters, Its Metabolites and Potential Impact on Symbiodinium Dinoflagellates.

Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m³) forming a floating raft that covered a coastal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015